

Paulina Hobbs UK&I, Head of Operations East Coast, Lowestoft 29th of September 2015

New Course for Offshore O&M

O&M Offshore Market – History and Future

- 1. Where is the Offshore O&M Market Going?
- 2. Challenges of offshore O&M Today

3. Way forward: Keys to unlock the complex O&M situation

Siemens Wind Power: Pioneering in Offshore Wind Power and O&M Solutions

Proven operational experience based on +1 200 offshore turbines since 1991

Pioneering solutions with trusted and recognized bankability

© Siemens Wind Power A/S 2015 All rights reserved.

Page 3

Offshore Wind Power: Strong Historic Growth

Source: EWEA: "Key Trends & Statistics"

Challenge: Securing Uptime More Important Than Ever

Dimensions of offshore technology

- Turbine size: From 450 kW to 6 MW
- Project size: From 5 MW to 630 MW
- Rotor diameter: From 35 m to 154m
- Hub height: From 35m to 120m
- Blade lift operations from 3 to 100 tons
- Introduction of DD technology

Cost of downtime:

Example of avg. production loss from 1 day of downtime for a North Sea offshore turbine

- 450kW turbine: EUR 250,-
- 6 MW turbine: EUR 4 000,-

Based on German FIT and 10m/s.

Challenge: Larger Projects Moving Far Shore into Deeper Waters

Crowne Estate estimates that in 2025 UK will have:

- 2 700 turbines within 12 NM => Traditional CTVs
- 3 800 turbines within 40 NM => 3rd generation CTVs
- 3 000 turbines beyond 40 NM => Far shore solutions

Based on traditional logistical solutions far shore wind power projects mean less efficient projects:

- Extended and uncomfortable travel time
- Smaller available window for O&M operations

EWEA: "Key Trends & Statistics"

Challenge: Have Traditional Access Solutions Reached Their Limit?

Travel time

In large projects the wasted transit time using several CTVs can exceed the window of effective working hours in the turbine

Travel comfort

The human body absorbs motions from the sea – even when sailing at 1.5 m Hs. (Hmax can be up to 1.5 - 1.8 times higher)

Limited planeability of production

Fender access is subject to the individual perception and wellbeing of offshore technicians

Challenge: We end up working less than 1/3 of the time

Challenge: When Access is needed, it is most difficult

Seasoned scheduled services ?

Winter time is great for wind power yield, but work against us when we have to fix failures

We need to be able to access especially when the potential loss of production is highest, but this is not always possible due to high waves and small vessels

Access is key – throughout the year!

Weather down time for an offshore wind park

O&M needs to take a New Course: 5 Keys to unlock far shore O&M Complexity

Match complex high growth scenario with the right solutions:

- Integrate EHS right from the start in every solution

 too many errors in the industry currently
- 2. Utilize Smart Data: Remote monitoring and diagnostics
- 3. Simulate and model logistic service concepts before operation: "Think before acting"
- 4. Rethink logistics towards purpose built vessels and new access methods
- Change O&M perception: From: Visiting a wind farm for O&M purposes Into Living in the wind farm for O&M purposes

SIEMENS

Key no.1: Integrating EHS from the Start: Safety by Design

Preparing employees:

- Global technical courses and safety trainings
- Active member of Global Wind Organization
- 1 600 technicians have obtained qualification to service Siemens turbines

Planning the O&M operation:

- Modelling and simulation of service logistics
- RDA fix failures remotely, bring the right parts

Execution with Zero Harm:

 Roll with the waves for hours or walk to work from a comfortable and efficient vessel

Page 11

Key no. 2: Utilize Smart Data: Avoid visits

Fix the basics remotely

- Minimize events where corrective service operation and call out of technicians is needed.

Turn unplanned into planned service

- Early identification of fast and slowly developing failures
- Optimized planning of service, spare parts and chartering of vessels

Vibration diagnostics

- High resolution data analysis on complex issues

TO INCOME AND A

Key no. 2 Utilize Smart Data: Plan efficiently

1) Inspection request when vibration level reach mask maximum.

2) Visual inspection in the WTG 13 days later to find there is a damage to the main bearing

SIEMENS

3) 4 weeks from visually inspecting the damage, the main bearing is exchanged and vibration levels become normal again.

The turbine was monitored closely, but kept in operation due to the early detection – with efficient mobilization of a jack up and sourcing of components.

Key no. 3: Simulation and Modelling before Operations

- Weather data
- Turbine data
- Service terms
- Technicians
- Project and site specific data
- Logistical asset specifications

CIEMENO	c							
Welcome, Rinne	e, Andre (E S SR WP BA PL	MAS CSD)						Wind
								Simul
Home	Country Turbine Pr	ject Resources ManPow	er Weather Simulation	Simulation Reports U Visualization Management	perment DB	📰 😈 Logout		
Project:* Borkum	. Riferand - Simulations: 30	V1Heli800_c - Simulation Run	i J Daily	Weekly Honthly				Quick Links:
				¬ 0				Add/Hodify Country Details View Country Details
2016	2017	2018	2019	2020 Stop				Add/Modify/Delete Project Details
Wind Park Gadg	jet					Weather G	adget	Upload Weather Details
					ń	Friday, January 04, 2	019 12:00 AM	View Weather Details
	+ +	- + +	+ + +	+ +		Wind Speed(at 10m):	10,8700	Add/Upload Turbine Details View Turbine Details
	1 1	1 1	1 1 1			Wind Speed(at 70m):	11,5400	Add/Modify Nanpower Details
	1 2 5929 592	3 4 5929 5929	5 6 7 5929 5929 5929	8 9 5929 5929		Word Speed(at 100m):	11.7700	View ManPower Details
	5929 592	9 5929 5929	5929 5929 5929	5929 5929				Add/Hobry Resources
						Current Speed:	0,2100	Start Simulation
	+ +	- + +	イイイ			Significant Wave Height:	2,0400	View Simulation
						Visibility:	80,0000	Start Simulation Visualization Generate Reports
	10 11 5929 592	12 13 9 5929 5929	14 15 16 5929 5929 5929	17 18 5929 0		Summary G	adget	Add/Modify DB Details
	5929 592	9 5929 5929	5929 5929 5929	5929 5929		Turbines Online:	56	Current Culture: da-DK
	+ $+$	-++	+++	++		Turbines Offline:	2	
	19 20 5929 592	21 22 9 5929 5929	23 24 25 5929 5929 5929 5020 5020	26 27 5929 5929 5020 5929		Potential Power Produced (in HW	-h): 343,882	
					*	Energy Produced(in MW-h):	332,024	
l						Total Accumulated Power(in MW-	h): 31469896,94	46
Service Activities	es Gadget					~		
ServiceActivityID	TurbineID Type Of Failure	Num Of Logistics Num	Of Tech Status ServiceActivity Ty	ype Logistic Type Logistic SubTy	pe			
73633	18 TROUBLESHOOTING	0 2	Corrective	HELICOPTER 2pax				

Wind farm simulation

Output scenarios

- 6 CTV solution:
- + Cheap vessel
- Many technicians
- Too much wasted time

SIEMENS

SOV, CTV and heli solution: Efficient

2 SOV solution:

- + EHS
- Many technicians
- Too much wasted time

Key no. 4: Rethink Logisitics: Pioneering a New Vessel Design

New design conceived: Service Operation Vessel

Dec 2014: On schedule for delivery

2 additional SOVs ordered for DanTysk / Sandbank and Gemini

Pioneering a new vessel class: Service operation vessel (SOV):

- Reducing weather downtime with operations in 2.3m Hs waveheight
- Hydraulic gangway access and modern crew accomodation
- Spare part storage and daughter crafts for in-farm operations

© Siemens Wind Power A/S 2015 All rights reserved.

Page 15

Key no. 4 Rethink Logisitics: Advantages Employing SOVs

Example: Staggered shift pattern

Example: Weather downtime comparison for an offshore site

Example: Effective working hours for a technician in a 12 hours shift

One vessel to deploy several teams

veral teams One vessel to reduce weather dowtime

One vessel to reduce waste time

Implications of employing a Service Operation Vessels for Large Far Shore Projects:

- Staggered shift pattern to reduce waste time during shifts
- From 1.5 m Hs to 2.3m Hs waveheight to reduce weather downtime and staff
- Living in the wind farm reduces time wasted and increases efficiency of offshore O&M

Key no. 4 Rethink Logisitics: Pioneering in Dedicated Service Jack-Up

New service jack up design by DBB

DBB service jack up under construction

Siemens' long term charter of WIND SERVER

Advantages of chartered purpose built vessel

- Dedicated service of large-scaled offshore projects across Northern Europe
- Purpose-built with smaller dimensions for flexible and fast O&M operations
- Reduced mobilization and a well trained crew, will secure fast responses to unscheduled events

Photos: Courtesy of DBB JackUp A/S

Key No. 5 Change of Perception - The Gemini Project

Project specifications:

- 80 km from shore and 68 square km
- 150 turbines: SWT 4.0-130
- 15 year LTP service term from 2016
- Two-contract structure: Turbine contract and BoP
 minimized interface issues and easier financing
- OEM participation in financing

What's new ?

First far shore site using the SOV and helicopter for O&M

SIEMENS

- SOV operation in staggered shift pattern 14 days shift
- First to integrate helicopter access and heli pad inside the wind farm
- First Dutch O&M operation based on helicopter access
- Biggest and most complex project ever

From: Visiting a wind farm for service purposes

Into: Living in the wind farm for service purposes

Thank you for listening

Paulina Hobbs Siemens Power Services – Wind Power Head of Operations East Coast UK&I

SIEMENS

Contact Information paulina.hobbs@siemens.com Mobile: +44 7921243033